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Pinwheel-like structures resulting from interaction of plane pulses of excitation
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We demonstrate that complex spatiotemporal structures may appear in an excitable system as the result of
interaction between two plane pulses. Such behavior has been obtained for FitzHugh-Nagumo type of dynam-
ics by numerical integration of reaction-diffusion equations.
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I. INTRODUCTION

The reactors composed of active regions, in which re
tions occur, and passive areas, where some of the reag
are absent and so only a part of reactions proceed there
been recently intensively studied@1,2#. In practical applica-
tions such reactors can be realized using an immobili
catalyst which is inhomogeneously distributed in space
passive areas are those which do not contain it. The inte
in such reactors comes from the fact that they may be app
in direct processing of chemical signals. One can cons
coding information with the use of chemical systems by
signing a high concentration of a selected reagent with
logical ‘‘true’’ state and a low concentration with the logic
‘‘false.’’ A pulse of concentration of a selected reage
which can propagate in an excitable system, may be rega
as a chemical signal. One can construct reactors which
cess such chemical signals, such as signal diodes@3#, logical
gates@1#, memory cells@2#, and even counters of number o
pulses@4,5#. In all these devices passive barriers separa
excitable areas play an important role. Here we show
two pulses of excitation interacting over a barrier may cre
an interesting spatiotemporal pinwheel-like structure.

II. THE FITZHUGH-NAGUMO MODEL

The FitzHugh-Nagumo~FHN! model of an excitable dy-
namics was originally introduced to describe the behavio
nerve tissues@6,7#. Here we use its yet simplified version
proposed by Yoshikawa, Motoike, and Kajiya in their stu
on information processing in chemical systems@8,1#. The
dynamics in active areas is described by the following eq
tions @1,6,7#:

t
]u

]t
52g@ku~u2a!~u21!1v#1Du¹2u, ~1!

]v
]t

5gu, ~2!

with the parameterst50.03, g51, k53.0, a50.02 ~as
given by Motoike and Yoshikawa in@1#! and Du50.00045

*Email address: kubas@ichf.edu.pl
†Email address: gorecki@ichf.edu.pl
1063-651X/2002/66~6!/067101~4!/$20.00 66 0671
c-
nts
ve

d
d
st
d

er
-
e

,
ed
o-

g
at
e

f

-

@9#. For these values of parameters the system has a s
stationary solution (u,v)5(0,0), homogeneous in spac
which is excitable. The system may be excited by a lo
decrease in the value ofv, which initiates a propagating
pulse. The variablesu andv cannot be directly associated t
concentrations of chemical spices, but their behavior
sembles the one of the activator~u! and inhibitor (v) in a
chemical system.

We assume that in the passive areas the kinetic terms
absent in the corresponding equations. The diffusion of a
vator is possible, thus it is natural to call these regions ‘‘d
fusion areas.’’ The equations describing the time evolution
u andv in these areas are@1#

t
]u

]t
5Du¹2u, ~3!

]v
]t

505const., ~4!

with t50.03 andDu50.00045, as in the excitable areas. O
courseu5v50 is also a stationary homogeneous solution
Eqs. ~3! and ~4!. Thus, the stationary values ofu and v in
both the active and passive media are equal to 0, but in
active part this solution is excitable. The system of equati
~1!–~4! has been used in studies on logical gates for che
cal signals@1#, chemical diode@1# and on a switch of a
chemical signal direction@9#.

In @1# Motoike and Yoshikawa discussed the problem
excitation of an active area by a pulse propagating in ano
active area, when both areas are separated by a pa
stripe. Of course, a pulse in one active area may excite
other active area if the passive stripe is narrow. The ma
mum width of the passive stripe for which such excitati
still occurs is called the penetration depth. It has been fo
@1# that the penetration depth depends on the geometry o
junction and on the direction of propagation of incide
pulses and it is maximal for plain pulses traveling in t
direction perpendicular to the barrier. In@1# Motoike and
Yoshikawa studied the FitzHugh-Nagumo model with t
same values of parameters as given above and they fo
that if the penetration depth for a single pulse with the wa
vector perpendicular to the barrier is denoted bydc , then the
penetration depth for a pulse traveling parallel to the bar
it is only 0.94•dc . In the considered unitsdc'0.163@1,10#.
Therefore, it is possible to adjust the width of the pass
©2002 The American Physical Society01-1
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BRIEF REPORTS PHYSICAL REVIEW E66, 067101 ~2002!
layer d in such a way that it is semi penetrable, i.e., it
transparent for a pulse propagating perpendicularly, but
penetrable for a pulse propagating parallel to it. In the un
used,d should satisfy 0.94•dc,d,dc .

Calculations for the FitzHugh-Nagumo model ha
shown that when a regular train of excitable pulses arrive
the passive barrier then some pulses from the train are ab
cross a passive barrier, which is wider than the penetra
depth for a single pulse (dc) @10–12#. The mechanism of this
phenomenon is the following. Figure 1 shows the relaxat
towards the stable state on the phase planeu3v. The curve
plots the dependencev(u) close to the stable state and in th
regionv(u) is almost the same for exciting perturbations
well as for nonexciting perturbations with sufficiently larg
amplitudes. It is important that for the FitzHugh-Nagum
model the stable state is reached through dumped osc
tions. Let us assume that a barrier is not penetrated by
first pulse. The system behind the barrier is not excited, b
is still perturbed and relaxes as shown in Fig. 1. If the sec
perturbation comes it may find the system behind the bar
in a state characterized by a positive value of activator an
negative value of inhibitor. And such a state may be exci
by a smaller perturbation than the one needed to excite
stationary state. As a result the second~or later! pulse may
cross a barrier which is nonpenetrable for the first one. S
a phenomenon is absent in the models of Belous
Zhabotinsky reaction@13# ~the Rovinsky-Zhabotinsky mode
@14–17# and the Oregonator model@18–20#! considered in
@5,10,11#. In those models there are no oscillations arou
the stable state. Moreover, the mechanism of activator’s
cay is present in the passive areas and it is more effic
than in the active ones. As the result, the barrier which
transparent for a single pulse may be impenetrable for
train of pulses.

FIG. 1. The evolution towards the stable state for the conside
FitzHugh-Nagumo model. Values ofu and v are given in dimen-
sionless units.
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III. COMPLEX STRUCTURES RESULTING FROM
INTERACTIONS OF TWO PULSES

Let us consider two excitable areas@within which Eqs.~1!
and ~2! hold#, separated by a semi-penetrable stripe of
passive medium@Eqs.~3! and ~4!#. We selected its width as
d50.16, so the barrier is transparent for pulses propaga
perpendicularly, but impenetrable for those propagating p
allel to it. We will show that in such systems very interesti
spatiotemporal structures may emerge, if two excita
pulses interact via such a passive barrier.

The interaction of pulses is investigated by numerical
tegration of the reaction-diffusion equations~1!–~4!. We
studied an area 8.038.0 units with a semipenetrable passi
stripe in the middle. It is covered with a square grid of 4
3400 points. For this grid the passive stripe was 8 g
points wide. We assumed that a free flow of the activato
possible between the active~excitable! and the passive fields
and that there are no flux boundary conditions on the bord
of the square. The integration was carried out with an i
plicit method based on the Crank-Nicolson discretization
the Laplace operator@21#. We used the time integration ste
dt50.005. At the beginning the values ofu and v in both
active and passive areas corresponded to the stationary s
(u5v50). Pulses in the investigated system were initia
by local decreasingv to v ini520.2. The calculations were
carried out up totmax5200.

Figure 2 presents the evolution of the system with t
plane pulses of excitation, traveling along the passive st
in opposite directions. In Fig. 2, the gray areas show
excitable field, the black horizontal line marks the diffusio
stripe, and lighter areas correspond to higher values ofu. The
pulse located in the bottom active area travels to the rig
while the other one, in the upper active area, moves to
left @Fig. 2~a!#. At a certain time the pulses go past each oth
@Fig. 2~b!#. The region after each pulse relaxes towards
stable state via oscillations and at a certain point the per
bation generated by a pulse propagating on the other sid
the barrier appears to be sufficiently large to excite it. T
excitations appear symmetrically on both sites of the bar
@Fig. 2~c!# and circular pulses develop@Fig. 2~d!#. And yet
again, there are two excitable pulses which move on b
sides of the passive stripe in opposite directions; they m
@Fig. 2~e!# and the whole scenario repeats@Figs. 2~f!, 2~g!,
and 2~h!#. The stable pinwheel-like structure is formed.

Another interesting, but qualitatively similar, type of ev
lution is observed for pulses traveling in perpendicular dir
tions ~Fig. 3!. One of the pulses, located in the upper part
the system, moves along the passive stripe, to the right.
is alone, it never crosses the barrier. Another pulse, locate
the bottom part of the system, travels upwards, in the dir
tion perpendicular to the stripe@cf. Fig. 3~a!#. The pulse ini-
tially located in the bottom part of the system excites the a
behind the barrier almost everywhere except a narrow in
val behind the upper pulse where the medium is not rela
yet. As a result, we obtain a pulse spreading to the ri
~following the first pulse! and upwards@Fig. 3~b!#. On its
way to the right it propagates along the passive stripe
introduces perturbation into the active area below the str

d
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BRIEF REPORTS PHYSICAL REVIEW E66, 067101 ~2002!
If this perturbation matches with the state of the system
the area below then the excitation appears@Fig. 3~c!#. A cir-
cular pulse is created@Fig. 3~d!# and one branch of it follows
the pulse on the upper side. It does not excite the up
active part because the medium is not relaxed yet. The o
part, propagating to the left, finds its way from the barr
toward the relaxed upper active medium and creates a c
lar pulse on the other side of it@Fig. 3~e!#. It expands and
creates a pulse which crosses the barrier again@Figs. 3~f!–
3~h!#.

Numerically both structures presented in Figs. 2 and 3
stable. They persisted in calculations lasting twenty tim
longer than a pulse needed to get through the whole squ
We did not observe any change in the position of the ce
of the pinwheel in time. In order to test the numerical stab

FIG. 2. The ‘‘pinwheel’’ on a plane with a single stripe of di
fusion field, occurring when two excitable pulses traveling in p
pendicular directions meet. The consecutive snapshots presen
contours ofu as a function of space coordinates (x,y) ~white areas,
u.0.4; light grey areas,20.2,u,0.1; dark grey areas
u,20.2) at moments of time:~a! t54.00, ~b! t57.00, ~c! t
58.00, ~d! t59.00, ~e! t512.00, ~f! t517.00, ~g! t520.00, and
~h! t521.00. The black horizontal line marks the position of pa
sive stripe; all remaining areas are active. The distances onX andY
axis are given in dimensionless units of distance.
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ity with respect to parameters of integration we repated c
culations using 8003800 grid covering the same area, so t
spacing between grid points was reduced by half. The p
sive stripe was 17 grid points wide. The results were
same as shown in Figs. 2 and 3. We performed similar
culations for systems with the passive stripe wider or n
rower by 1% with respect to the one used in Figs. 2 and
Comparing with the evolution presented in Figs. 2 and 3,
have not found any remarkable differences in the appe
ance, shape, or stability of the pinwheels obtained from th
calculations. However, the range of barrier’s widths in whi
the pinwheels are observed is narrow. We have also
formed calculations for the passive stripe by 10% wider a
such a barrier is too wide to be crossed. The pulses show
Fig. 2 propagate without visible interactions. In the case c
sidered on Fig. 3 the pulse propagating upwards dies at
barrier without affecting the pulse propagating in the upp
active area. If the barrier is by 5% narrower than the o

-
the

-

FIG. 3. The ‘‘pinwheel’’ on a plane with a single stripe of dif
fusion field, occurring when two excitable pulses traveling in p
pendicular directions meet. The consecutive snapshots presen
contours ofu as a function of space coordinates (x,y) at moments
of time: ~a! t53.00, ~b! t57.50, ~c! t59.25, ~d! t510.00, ~e! t
512.00, ~f! t513.25, ~g! t514.00, and~h! t515.50. The gray
scale is the same as in Fig. 2.
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BRIEF REPORTS PHYSICAL REVIEW E66, 067101 ~2002!
considered on Figs. 2 and 3 then it can be penetrated b
inpulse propagating parallel to it. As a result the excitat
spreads quickly in the whole system and the system ret
to the stationary state without forming any stable spa
structure.

IV. CONCLUSIONS

In the paper we have discussed interesting example
pinwheel-like spatiotemporal structures in two-dimensio
systems composed of active and passive areas in which
namics is described with the FitzHugh-Nagumo type mo
@Eqs. ~1!–~4!#. These structures are numerically stable a
they are observed in a large range of widths of semip
etrable passive stripes.

The ‘‘pinwheels’’ would definitely influence signal pro
cessing in reactors with very wide signal channels. One
the reactors which may be affected is a cross junction c
s.
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cidence detector@9,17# in which the pinwheel appears whe
one of the signals follows just after another. A pinwheel m
also block the negation gate described in@1#. Therefore their
existence should be taken into account when signal proc
ing reactors are designed.

We have repeated similar calculations using t
Rovinsky-Zhabotinsky~RZ! model of the ferroin catalyzed
Belousov-Zhabotinsky reaction@14–16# and the same value
of its parameters as in@17#. We have not observed ‘‘pin-
wheels’’ in the calculations based on the RZ model beca
of a fast relaxation of activator inside a barrier and the
sence of oscillations when the system approaches the s
state.
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